

3.3V, High ESD Protected ,1Mbps High Speed CAN Transceiver

FEATURES

OUTLINE

- > Operates with a single 3.3 V Supply
- Compatible With ISO 11898-2 Standard
- Bus Pin ESD Protection Exceeds ±15 kV HBM
- High Input Impedance Allows for Up to 120 Nodes
- Adjustable Driver Transition Times for Improved Emissions Performance
- Low Current Standby Mode 650µA typical
- Designed for Data Rates up to 1 Mbps
- Thermal Shutdown Protection
- > Open Circuit Fail-Safe Design
- Glitch Free Power Up and Power Down Protection for Hot Plugging Applications

Provide green and environmentally friendly lead-free package

DESCRIPTION

The SL65HVD230 is the interface between the Controller Area Network (CAN) protocol controller and the physical bus. It is designed for use with the $3.3V \mu$ Ps, MCUs and DSPs with CAN controllers, or with equivalent protocol controller devices. It is used in Industrial Automation, Control, Sensors and Drive Systems, Motor and Robotic Control, Building and Climate Control (HVAC), Telecom and Basestation Control and Status. The devices are intended for use in applications employing the CAN serial communication physical layer in accordance with the ISO 11898 standard.

PARAMETER	SYMBOL	CONDITION	MIN.	MAX.	UNIT
Supply voltage	Vcc		3	3.6	V
Maximum transmission rate	1/t _{bit}	Non-return to zero code	1		Mbaud
CANH/CANL input or output voltage	V_{can}		-16	+16	V
Bus differential voltage	V_{diff}		1.5	3.0	V
Virtual junction temperature	T _{amb}		-40	125	°C

PIN CONFIGURATION

LIMITING VALUES

PARAMETER	SYMBOL	VALUE	UNIT
Supply voltage	V _{CC}	-0.3~+6	V
DC voltage on D/R pins	D, R	-0.5~VCC+0.5	V
Voltage range at any bus terminal (CANH, CANL)	CANL, CANH	-18~18	V
Transient voltage on pins CANH, CANL	V_{tr}	-25~+25	V
Receiver output current, I_O		-11~11	mA
Storage temperature		-40~150	°C
Virtual junction temperature		-40~125	°C
Welding temperature range		300	°C
Continuous total power	SOP8	400	mW
dissipation	DIP8	700	mW

The maximum limit parameters means that exceeding these values may cause irreversible damage to the device. Under these conditions, it is not conducive to the normal opration of the device. The continuous operation of the device at the maximum allowable rating may affect the reliability of the device. The reference point for all voltages is ground.

PINNING

PIN	SYMBOL	DESCRIPTION
1	D	CAN transmit data input(LOW for dominant and HIGH for recessive bus states), also called TXD, driver input
2	GND	Ground connection
3	VCC	Transceiver 3.3V supply voltage
4	R	CAN receive data output(LOW for dominant and HIGH for recessive bus states), also called RXD, receiver output
5	Vref	Vcc/2 reference output pin
6	CANL	Low level CAN bus line
7	CANH	High level CAN bus line
8	Rs	Mode select pin: strong pull down to GND=high speed mode, strong pull up to Vcc =low power mode,10kQ to 100kQ pull down to GND=slope control mode

DRIVER ELECTRICAL DC CHARACTERISTICS

SYMBOL	PARAME	ГER	CONDITION	MIN.	TYP.	MAX.	UNIT
V	output voltage	CANH	$VI=0V,R_{S}=0V,R_{L}=60\Omega$	2.45		VCC	V
V _{O(D)}	(Dominant)	CANL	(Figure1, Figure 2)	0.5		1.25	v
V	Differential	1	$\label{eq:VI=0V,R_S=0V,R_L=60\Omega} $$ $ $ (Figure 1) $$ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $$	1.5	2	3	V
V _{OD(D)}	voltage (Domina		$VI=0V,R_L=60\Omega,R_S=0V$ (Figure 3)	1.2	2	3	V
V	output voltage	CANH	$VI=3V,R_S=0V,R_L=60\Omega$		2.3		V
V _{O(R)}	(Recessive)	CANL	(Figure 1)		2.3		v
	Differential	output	$VI=3V, R_S=0V$	-0.12		0.012	V
V _{OD(R)}	voltage (Recessiv		VI=3V, R _S =0V,NO LOAD	-0.5		0.05	V
I _{IH}	High-level inpu	t current	VI=2V	-30			μΑ
IIL	Low-level input	t current	VI=0.8V	-30			μΑ
	Short-circuit	output	CANH=-2V	-250			A
I _{OS}	current	;	CANH=7V			1	mA

		CANL=-2V	-1			
		CANL=7V			250	
Co	Output capacitance	See receiver				
		Standby		650	950	μΑ
I _{CC}	Supply current	$V_I=0V$ (Dominant), No load		10	17	mA
		V _I =VCC (Recessive) , No load		10	17	mA

 $(If not otherwise specified, V_{CC}=3.3V\pm10\%, Temp=T_{MIN}\sim T_{MAX}, Typical:VCC=+3.3V, Temp=25^{\circ}C)$

DRIVER SWITCHING CHARACTERISTICS

SYMBOL	PARAMETER	CONDITION	MIN.	TYP.	MAX.	UNIT
	Propagation delay	R=0, Short circurt (Figure 4)		35	85	
t plh	time	R=10 kΩ		70	125	
	(low-to-high-level)	R=100 kΩ		500	870	
	Propagation delay	R=0, Short circurt (Figure 4)		70	120	
t _{PHL}	time	R=10 kΩ		130	180	
	(high-to-low-level)	R=100 kΩ		870	1200	
		R=0, Short circurt (Figure 4)		35		
t _{sk(p)}	Pulse skew	R=10 kΩ		60		ns
		R=100 kΩ		370		
		R=0, Short circurt (Figure 4)	25	50	100	
tr	Differential output signal rise time	R=10 kΩ	80	120	160	
	Signal file time	R=100 kΩ	600	800	1200	
		R=0, Short circurt (Figure 4)	40	55	80	
tf	Differential output signal fall time	R=10 kΩ	80	125	150	
		R=100 kΩ	600	825	1000	

 $(If not otherwise specified, V_{CC}=3.3V\pm10\%, Temp=T_{MIN}\sim T_{MAX}, Typical: VCC=+3.3V, Temp=25^{\circ}C)$

RECEIVER ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	CONDITION	MIN.	TYP.	MAX.	UNIT
V _{IT+}	Positive-going input threshold voltage	Table 1		750	900	mV
V _{IT} .	Negative-going input threshold voltage	Table 1	500	650		mV
V _{hys}	Hysteresis voltage	VIT+- VIT-		100		mV
V _{OH}	High-level output voltage	-6V <v<sub>ID<500mV I₀=-8mA (Figure 5)</v<sub>	2.4			V
Vol	Low-level output voltage	900mV $<$ V_{ID} $<$ 6V I_0 =8mA (Figure 5)			0.4	V
Ii		VIH=7V, VCC=0V	100		350	μΑ
Ii	Bus input current	VIH=7V, VCC=3.3V	100		250	μΑ
I _i	Bus input current	VIH=-2V, VCC=0V	-100		-20	μΑ
Ii		VIH=-2V, VCC=3.3V	-200		-30	μΑ
R _i	Bus input resistance	Corresponding standards of ISO 11898-2	20	35	50	KΩ
<i>R</i> diff	Differential input resistance	Corresponding standards of ISO 11898-2	40		100	KΩ
C _i	Bus input capacitance	Corresponding standards of ISO 11898-2		40		pF
C _{diff}	Diferential input capacitance	Corresponding standards of ISO 11898-2		20		pF
I _{CC}	Supply current	See driver				

(If not otherwise specified, $V_{CC}=3.3V\pm10\%$, Temp=T_{MIN}~T_{MAX}, Typical : VCC=+3.3V, Temp=25°C)

RECEIVER SWITCHING CHARACTERISTICS

SYMBOL	PARAMETER	CONDITION	MIN.	TYP.	MAX.	UNIT
t _{PLH}	Propagation delay time (low-to-high-level)	Figure 6		35	50	ns

t _{PHL}	Propagation delay time (high-to-low-level)	Figure 6	35	50	ns
$t_{s\mathrm{k}}$	Pulse skew	$ t_{PHL}-t_{PLH} $		10	ns
t _r	output signal rise time	Figure 6	1.5		ns
t _f	output signal fall time	Figure 6	1.5		ns

(If not otherwise specified, VCC=3.3V±10%, Temp=TMIN~TMAX, Typical: VCC=+3.3V, Temp=25°C)

DEVICE SWITCHING CHARACTERISTICS

SYMBOL	PARAMETER	CONDITION	MIN.	TYP.	MAX.	UNIT
	Total loop delay, driver	R=0, Short circurt (Figure 8)		70	115	
t(LOOP1)	input to receiver output,recessive to	R=10 kΩ		105	175	ns
dominant	R=100 kΩ		535	920		
	Total loop delay, driver	R=0, Short circurt (Figure 8)		100	135	
t(LOOP2)	input to receiver output,dominant to	R=10 kΩ		155	185	ns
	recessive	R=100 kΩ		830	990	

(If not otherwise specified, VCC=3.3V±10%, Temp=TMIN~TMAX, Typical: VCC=+3.3V, Temp=25°C)

OVER TEMPERATURE PROTECTION

SYMBOL	PARAME TER	CONDITION	MIN.	ТҮР.	MAX.	UNIT
Thermal shutdown temperature	Tj(sd)		155	165	180	°C

(If not otherwise specified, VCC=3.3V±10%, Temp=TMIN~TMAX, Typical: VCC=+3.3V, Temp=25°C)

CONTROL-PIN CHARACTERISTICS

SYMBO L	PARAMETER	CONDITION	MIN.	ТҮР.	MAX.	UNIT
T _{WAKE}	wake-up time from standby mode	R_S adds square wave (Figure 7)		0.55	1.5	us

V	Reference output	-5uA <iref<5ua< th=""><th>$0.45 V_{CC}$</th><th>$0.55 V_{CC}$</th><th>V</th></iref<5ua<>	$0.45 V_{CC}$	$0.55 V_{CC}$	V
V _{ref}	voltage	-50uA <iref<50ua< td=""><td>$0.4 V_{CC}$</td><td>0.6V_{CC}</td><td>V</td></iref<50ua<>	$0.4 V_{CC}$	0.6V _{CC}	V
I _{RS}	Input current for high-speed	V _{RS} <1V	-450	0	μΑ
V _{RS}	Input voltage for standby/sleep	0 <v<sub>RS<v<sub>CC</v<sub></v<sub>	$0.75 V_{CC}$	V _{CC}	V
Ioff	Power-off leakage current	Vcc=0V , $V_{CANH}=V_{CANL}=5V$	-250	250	μΑ

(If not otherwise specified, VCC=3.3V±10%, Temp=TMIN~TMAX, Typical: VCC=+3.3V, Temp=25°C)

SUPPLY CURRENT

SYMBOL	PARAMETER CONDITION		MIN.	ТҮР.	MAX.	UNIT
I _{CC}	Power consumption in standby mode	R _S =VCC, V _I =VCC		650	950	μΑ
	Dominant power consumption	V _I =0V, R _S =0V, LOAD=60Ω		50	70	mA
	Recessive power consumption	V _I =VCC, R _S =0V, NO LOAD		6	10	mA

(If not otherwise specified, VCC=3.3V±10%, Temp=TMIN~TMAX, Typical:VCC=+3.3V, Temp=25°C)

FUNCTION TABLE

Table 1 Receiver characteristics in common mode (V(RS)=1.2V)

V _{IC}	V _{ID}	V _{CANH}	V _{CANL}	R OU	ТРИТ
-2 V	900mV	-1.55V	-2.45V	L	
7 V	900mV	8.45V	6.55V	L	VOI
1 V	6V	4V	-2V	L	VOL
4 V	6V	7V	1V	L	
-2 V	500mV	-1.75V	-2.25V	Н	
7 V	500mV	7.25V	6.75V	Н	VOH
1 V	-6V	-2V	4V	Н	VOH
4 V	-6V	1V	7V	Н	
Х	Х	Open	Open	Н	

(1) H=High voltage; L=Low voltage; X= Irrelevant

Table2.0perating Mode						
R _S Pin	MODE	DRIVER	RECEIVER	RXD Pin		
LOW, V _(Rs) < 1.2V, strong pull down to GND	High Speed Mode	Enabled(ON) High Speed	Enabled(ON)	Mirrors Bus State		
LOW, $V_{(Rs)} < 1.2V$, 10k Ω to 100k Ω pull down to GND	Slope Control Mode	Enabled(ON) With Slope Control	Enabled(ON)	Mirrors Bus State		
High、 V _(Rs) > 0.75 V _{CC}	Standby Mode	Disabled (OFF)	Enabled(ON)	Mirrors Bus State		

Table2.Operating Mode

Table3.Driver Function

	D	OUTP	DUCCTATE	
INPUT D	Rs	CANH	CANL	BUS STATE
L	$V_{(Rs)} < 1.2V$ (including	Н	L	Dominant
Н	10kΩ to 100kΩ pull down to GND)	Z	Z	Recessive
Open	Standby Mode	Z	Z	Recessive
Х	$V_{(Rs)} > 0.75 V_{CC}$	Z	Z	Recessive

(1) H=High voltage; L=Low voltage; Z=High impedance

Table4. Receiver Function

V _{ID} =CANH-CANL	R _S	OUTPUT R
V _{ID} ≥0.9V	Х	L
$0.5 < V_{ID} < 0.9 V$	Х	?
$V_{ID} \leq 0.5 V$	Х	Н
Open	Х	Н

(1) H= High voltage; L= Low voltage; ? =Indeterminate; X=Irrelevant

TEST CIRCUIT

ADDITIONAL DESCRIPTION

1 Sketch

The SL65HVD230 is the interface between the Controller Area Network (CAN) protocol controller and the physical bus. It is designed for use with the $3.3V \mu$ Ps, MCUs and DSPs with CAN controllers, or with equivalent protocol controller devices. It is used in Industrial Automation, Control, Sensors and Drive Systems, Motor and Robotic Control, Building and Climate Control (HVAC), Telecom and Basestation Control and Status. It supports programmable data rates up to 1 Mbps. The devices are intended for use in applications employing the CAN serial communication physical layer in accordance with the ISO 11898 standard.

2 Current protection

A current-limiting circuit protects the transmitter output stage from damage caused by accidental short-circuit to either positive or negative supply voltage, although power dissipation increases during this fault condition.

3 Over temperature protection

SL65HVD230 has the function of over temperature protection. After the over temperature protection is triggered, the current of the driving stage will be reduced, because the driving tube is the main energy consuming part. The current reduction can reduce the power consumption and thus reduce the chip temperature. At the same time, other parts of the chip still work normally.

4 Transient Protection

Electrical transients often occur in automotive application environment, CANH、CANL of SL65HVD230 have the function of preventing electrical transient damage.

5 Operating modes

The RS pin mode, slop (Pin 8) of the SL65HVD230 provides three different modes of operation: high-speed mode, slope-control mode, and low-power mode.

5.1 High-Speed Mode

The high-speed mode can be selected by applying a logic low to the RS pin (pin 8). The high-speed mode of operation is commonly employed in industrial applications. High-speed allows the output to switch as fast as possible with no internal limitation on the output rise and fall slopes. If the high speed transitions are a concern for emissions performance slope control mode can be used.

If both high speed mode and the low-power standby mode is to be used in the application, direct connection to a μ P, MCU or DSP general purpose output pin can be used to switch between a logic-low level (< 1.2 V) for high speed operation, and the logic-high level (> 0.75 VCC) for standby.

5.2 Slope Control Mode

Electromagnetic compatibility is essential in many applications while still making use of unshielded twisted pair bus cable to reduce system cost. Slope control mode was added to the SL65HVD230 devices to reduce the electromagnetic interference produced by the rise and fall times of the driver and resulting harmonics. These rise and fall slopes of the driver outputs can be adjusted by connecting a resistor from RS (pin 8) to ground or to a logic low voltage. The slope of the driver output signal is proportional to the pin's output current. This slope control is implemented with an external resistor value of 10 k Ω to 100 k Ω to achieve slew rate.

5.3 Standby Mode (Listen Only Mode)

If a logic high (> 0.75 VCC) is applied to RS (pin 8), the circuit of the SL65HVD230 enters a low- current, listen only standby mode, during which the driver is switched off and the receiver remains active. In this listen only state, the transceiver is completely passive to the bus. It makes no difference if a slope control resistor is in place. The μ P can reverse this low-power standby mode when the rising edge of a dominant state (bus differential voltage > 900 mV typical) occurs on the bus. The μ P, sensing bus activity, reactivates the driver circuit by placing a logic low (< 1.2 V) on RS (pin 8).

SOP8 DIMENSIONS

PACKAGE SIZE					
SYMBOL	MIN./mm	TYP./mm	MAX./mm		
А	1.50	1.60	1.70		
A1	0.1	0.15	0.2		
A2	1.35	1.45	1.55		
b	0.355	0.400	0.455		
D	4.800	4.900	5.00		
Е	3.780	3.880	3.980		
E1	5.800	6.000	6.200		
e		1.270BSC			
L	0.40	0.60	0.80		
с	0.153	0.203	0.253		
θ	-2°	-4°	-6°		

B1

 \square

DIP8 DIMENSIONS

	PACKA	GE SIZE	
SYMBOL	MIN./mm	TYP./mm	MAX./mm
А	9.00	9.20	9.40
A1	0.33	0.45	0.51
A2		2.54TYP	·
A3		1.525TYP	
В	8.40	8.70	9.10
B1	6.20	6.40	6.60
B2	7.32	7.62	7.92
С	3.20	3.40	3.60
C1	0.50	0.60	0.80
C2	3.71	4.00	4.31
D	0.20	0.28	0.36
L	3.00	3.30	3.60
	- A -		

ORDERING INFORMATION

TYPE NUMBER	TEMPERATURE	PACKAGE	
SL65HVD230DR	-40°C~125°C	SOP8	
SL65HVD230P	-40°C~125℃	DIP8	

SOP8 is packed with 2500 pieces/disc in braided packing. DIP8 is packed with 50 pieces/disc in tubed packing.